T his book sets out the theoretical basis underpinning the separation of multiphase, multi-component systems with application to the processes used to prepare hydrocarbon mixtures (oil, natural gas, and gas condensate) for transportation. The text is divided into seven sections.
Section I provides an introduction to the basic processes, the technological schemes, and the components of the equipment employed in systems for the field preparation of oil, natural gas, and gas condensate. The emphasis is on the designs and the principles of operation of separators, absorbers, and cooling devices. Mathematical modeling of the processes in these devices is covered in subsequent sections of the book.
The media with which one has to deal when investigating preparation processes of hydrocarbon systems are invariably multi-phase and multi-component mixtures. Section II thus covers the aspects of the hydromechanics of physical and chemical processes necessary for an understanding of the more specialized material contained in following sections. Among these are transfer phenomena of momentum, heat, mass, and electrical charge; conservation equations for isothermal and non-isothermal processes for multi-component and multi-phase mixtures; equations of state, and basic phenomenological relationships. Natural hydrocarbon systems exist as solutions, suspensions, colloidal systems, emulsions, gas-liquid and liquid-gas mixtures. Accordingly, Sections III–VII are devoted to each of the aforementioned kinds of systems.
Section III covers the theory and methods for investigating the behavior of multi-component charged and uncharged solutions. Considering non-charged solutions, the main focuses of attention are on diffusion processes with and without the possibility of chemical reactions, the flow of solutions in channels and pipes, processes on semi-permeable membranes (return osmosis), and mass exchange of particles, drops, and bubbles with the ambient media. For charged solutions, consideration is given to processes in electrolytic cells, electrodialysis, the structure of electrical double layers, electrokinetic phenomena, and electroosmosis.
Section I provides an introduction to the basic processes, the technological schemes, and the components of the equipment employed in systems for the field preparation of oil, natural gas, and gas condensate. The emphasis is on the designs and the principles of operation of separators, absorbers, and cooling devices. Mathematical modeling of the processes in these devices is covered in subsequent sections of the book.
The media with which one has to deal when investigating preparation processes of hydrocarbon systems are invariably multi-phase and multi-component mixtures. Section II thus covers the aspects of the hydromechanics of physical and chemical processes necessary for an understanding of the more specialized material contained in following sections. Among these are transfer phenomena of momentum, heat, mass, and electrical charge; conservation equations for isothermal and non-isothermal processes for multi-component and multi-phase mixtures; equations of state, and basic phenomenological relationships. Natural hydrocarbon systems exist as solutions, suspensions, colloidal systems, emulsions, gas-liquid and liquid-gas mixtures. Accordingly, Sections III–VII are devoted to each of the aforementioned kinds of systems.
Section III covers the theory and methods for investigating the behavior of multi-component charged and uncharged solutions. Considering non-charged solutions, the main focuses of attention are on diffusion processes with and without the possibility of chemical reactions, the flow of solutions in channels and pipes, processes on semi-permeable membranes (return osmosis), and mass exchange of particles, drops, and bubbles with the ambient media. For charged solutions, consideration is given to processes in electrolytic cells, electrodialysis, the structure of electrical double layers, electrokinetic phenomena, and electroosmosis.
Klik pada gambar untuk mengunduh file, Enjoy!